Prostacyclin receptor-mediated ATP release from erythrocytes requires the voltage-dependent anion channel.

نویسندگان

  • Meera Sridharan
  • Elizabeth A Bowles
  • Jennifer P Richards
  • Medina Krantic
  • Katie L Davis
  • Kristine A Dietrich
  • Alan H Stephenson
  • Mary L Ellsworth
  • Randy S Sprague
چکیده

Erythrocytes have been implicated as controllers of vascular caliber by virtue of their ability to release the vasodilator ATP in response to local physiological and pharmacological stimuli. The regulated release of ATP from erythrocytes requires activation of a signaling pathway involving G proteins (G(i) or G(s)), adenylyl cyclase, protein kinase A, and the cystic fibrosis transmembrane conductance regulator as well as a final conduit through which this highly charged anion exits the cell. Although pannexin 1 has been shown to be the final conduit for ATP release from human erythrocytes in response to reduced oxygen tension, it does not participate in transport of ATP following stimulation of the prostacyclin (IP) receptor in these cells, which suggests that an additional protein must be involved. Using antibodies directed against voltage-dependent anion channel (VDAC)1, we confirm that this protein is present in human erythrocyte membranes. To address the role of VDAC in ATP release, two structurally dissimilar VDAC inhibitors, Bcl-x(L) BH4(4-23) and TRO19622, were used. In response to the IP receptor agonists, iloprost and UT-15C, ATP release was inhibited by both VDAC inhibitors although neither iloprost-induced cAMP accumulation nor total intracellular ATP concentration were altered. Together, these findings support the hypothesis that VDAC is the ATP conduit in the IP receptor-mediated signaling pathway in human erythrocytes. In addition, neither the pannexin inhibitor carbenoxolone nor Bcl-x(L) BH4(4-23) attenuated ATP release in response to incubation of erythrocytes with the β-adrenergic receptor agonist isoproterenol, suggesting the presence of yet another channel for ATP release from human erythrocytes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pannexin 1 is the conduit for low oxygen tension-induced ATP release from human erythrocytes.

Erythrocytes release ATP in response to exposure to the physiological stimulus of lowered oxygen (O(2)) tension as well as pharmacological activation of the prostacyclin receptor (IPR). ATP release in response to these stimuli requires activation of adenylyl cyclase, accumulation of cAMP, and activation of protein kinase A. The mechanism by which ATP, a highly charged anion, exits the erythrocy...

متن کامل

2 Title : Pannexin 1 is the Conduit for Low Oxygen Tension - Induced ATP Release 3 from

24 Erythrocytes release ATP in response to exposure to the physiological stimulus 25 of lowered oxygen (O2) tension as well as pharmacological activation of the prostacyclin 26 receptor (IPR). ATP release in response to these stimuli requires the activation of 27 adenylyl cyclase, accumulation of cAMP and activation of protein kinase A. The 28 mechanism by which ATP, a highly charged anion, exi...

متن کامل

Regulation of cAMP by phosphodiesterases in erythrocytes.

The erythrocyte, a cell responsible for carrying and delivering oxygen in the body, has often been regarded as simply a vehicle for the circulation of hemoglobin. However, it has become evident that this cell also participates in the regulation of vascular caliber in the microcirculation via release of the potent vasodilator, adenosine triphosphate (ATP). The regulated release of ATP from eryth...

متن کامل

Volume-Dependent Atp-Conductive Large-Conductance Anion Channel as a Pathway for Swelling-Induced Atp Release

In mouse mammary C127i cells, during whole-cell clamp, osmotic cell swelling activated an anion channel current, when the phloretin-sensitive, volume-activated outwardly rectifying Cl(-) channel was eliminated. This current exhibited time-dependent inactivation at positive and negative voltages greater than around +/-25 mV. The whole-cell current was selective for anions and sensitive to Gd(3)+...

متن کامل

ATP stimulates the release of prostacyclin from perfused veins isolated from the hamster hindlimb.

ATP-stimulated prostacyclin release from veins was investigated using epigastric veins isolated from hamsters. Veins were perfused with MOPS-buffered physiological salt solution (PSS). ATP was administered into the perfusate, and the bath solution (MOPS-PSS) was collected and assayed for the presence of the stable prostacyclin metabolite 6-keto-PGF1alpha. ATP (100 microM) resulted in reproducib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 302 3  شماره 

صفحات  -

تاریخ انتشار 2012